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Abstract 
The theory of estimation of parameters of quantum-mechanical density operators is 
expressed in terms of the measurement of operator-valued measures. Lower bounds 
on mean-square errors of parameter estimates are set by two quantum-mechanical forms 
of the Cram6r-Rao inequality of classical statistics, derived here in terms of such 
measures. The results are exemplified by the simultaneous estimation of the real and 
imaginary parts of the complex amplitude of a coherent oscillation in the presence of 
thermal noise. 

1. Quantum Estimation Theory 

Est imat ion theory in its classical statistical f o rm starts with sets o f  
observat ions or data  (x2, x 2 , . . . , x , ) =  x described by a probabi l i ty  density 
funct ion (p.d.f.) p(x t0  ) depending on certain unknown  parameters  
(0,, 02 . . . . .  0,,) = 0. F r o m  a given set o f  da ta  x one is to deduce the mos t  
appropr ia te  values of  the parameters  0; the values one arrives at  are called 
estimates of  0 and are designated by (02, 02 . . . . .  0,,) = 0. In  determining the 
locat ion of  a star f rom its image on a photographic  plate, for  example,  the 
x{s  might  be the densities o f  developed grains at certain points of  the plate, 
and 02 and 02 would be the x- and y-coordinates  of  the center of  the stellar 
image. The p.d.f, p(xl0  ) would e m b o d y  the i l luminance distribution of  the 
image and the 'statistics '  o f  grain fo rmat ion  as it depends on the i l luminance 
at each point.  

The estimates are obta ined by certain mathemat ica l  operat ions on the 
data, represented by the functions, or  estimators, 0~(x), i = 1, 2 , . . . ,  m. In  
its mos t  general form, es t imat ion theory treats the parameters  0 as r a n d o m  
variables with a certain pr ior  p.d.f, z(O). Recognizing that  the estimates 0 

~" This research was supported by grant NSF GK-33811 from the National Science 
Foundation. 

Copyright �9 1973 Plenum Publishing Company Limited. No part of this publication may be reprodtlced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo- 
copying, microfilming, recording or otherwise, without written permission of Plenum Publishing Company 
Limited. 

361 



362 C A R L  W .  H E L S T R O M  

will seldom equal the true values 0 of the parameters, it postulates a cost 
function C(O,O) measuring the seriousness of the discrepancies. A cost 
function commonly used because of its mathematical tractability is the 
weighted sum of squared errors, the quadratic cost function 

m A 
c ( O ,  o) = y~ g , (o ,  - 0,) 5, g, > 0 (1.1) 

i=1 

or more generally 

C(O, O) = ~ ~ gij(O~ - 0~) (Oj - O j) (1.2) 
l = l  j ~ l  

where G ~ [Ig~j[[ is a positive-definite m • m matrix. Whatever the cost 
function, estimators 0(x) are sought for which the average cost 

e = f f z(O) C(O(x), 0) p(x [0) d" x d"  0 (1. 3) 

is minimum (Wald, 1939; Blackwell & Girshick, 1954). Here ~ denotes 
the space of  the parameters 0 and their estimates/~, 3E the space of the 
data x; dmO and d"x are elements of integration in those spaces. 

When the observed entity, or system S, must be treated quantum- 
mechanically, it is described by a density operator p(O) that depends on 
the unknown parameters, or estimanda, O. Suppose, for example, that the 
position qo and the momentum Po of a free particle are to be estimated at a 
certain time t, and it is known that the particle has been prepared as a 
minimum-uncertainty Gaussian wavepacket. Then 0 = (qo,Po), and the 
density operator is 

P(qo,Po) = ]ct(qo,Po)) (~(qo,Po)[ (1.4) 

where ] , )  is a coherent state as defined by Glauber (1963) and 

qo i -p~ , Aq Ap = h/2 (1.5) ~(qo,Po) = ~ + 2Ap 

Aq and Ap being the r.m.s, uncertainties in position and momentum. 
If the measurements x to be made on the system are specified, the joint 

p.d.f, p(x]0) of their outcomes can in principle be calculated from p(O), and 
the best manner of processing them in order to estimate the parameters 0 
can be sought through the classical theory. There is, however, a variety of 
measurements that might be made on the system S, and quantum estimation 
theory not only seeks the best estimators 0(x) based on the outcomes x of 
a set of measurements, but asks in the first place what are the best measure- 
ments to make (Helstrom, 1972, Section 6). 

In order to carry out this task it is necessary to express the average cost 
C not as in equation (1.3) in terms of the outcomes of certain measurements, 
but in a form permitting the greatest arbitrariness compatible with the laws 
of quantum mechanics. When a single parameter 0 is to be estimated on the 
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basis of a single observation, we can suppose that a quantum-mechanical 
operator O with eigenvalues 0 is being measured, and we can write the 
average cost as 

(7 = Tr f z(O) C(O, O)p(O)dO (1.6) 

where C(O, O) is an operator obtained by replacing the estimate 0 in the 
cost function C(O,O) by the operator O. For a quadratic cost function, 
( 0 -  0) 2, Personick (1971b) has derived an operator equation from which 
the optimum operator O can be determined. Yuen & Lax (1972) have 
extended this to estimates of two parameters combined into a single 
complex parameter, with the cost assessed by the sum of the squared errors 
in each. Solving the necessary operator equations in these cases is usually 
very difficult, and for estimation of more than one parameter with an 
arbitrary cost function C(O,O) the minimization of the expected cost (7 
has not, to the writer's knowledge, been explicitly achieved. In the next 
section we shall show how the average cost (7 can be expressed in a general 
formulation of quantum measurement in terms of so-called operator-valued 
measures. Even classical statistical estimation theory leads in general to 
complicated procedures whose minimum cost is not easily determined. 

The impediments to finding and assessing the optimum estimators have 
led theorists to resort to setting lower bounds on average error costs of 
procedures for estimating a given set 0 of parameters. For quadratic cost 
functions these bounds are provided by the Cram6r-Rao inequality, which 
was developed for estimates of parameters of classical probability density 
functions (Cram&, 1946; Rao, 1945). Quantum-mechanical counterparts 
have been developed by Helstrom (1967a, 1968a) and, for pairs of para- 
meters combined into complex numbers, by Yuen & Lax (1972). Their 
bound has been generalized to apply to a number of arbitrary real para- 
meters by Helstrom & Kennedy (1972). Our aim here is to reformulate 
that work in terms of operator-valued measures and thus to provide a more 
concise derivation of the basic inequalities. These are of interest to physicists 
because they quantify fundamental limitations imposed by nature on the 
accuracy with which physical quantities can be estimated. 

2. Operator- Valued Measures 
If the measurements to be made on the system S are described by 

commuting operators Xj acting in its Hilbert space ~ s  and having eigen- 
values xj, j = 1, 2,..., m, the estimators 0j(x) can be replaced by commuting 
operators Oj = Oj(X1, X2 ..... Xm), and we can envision measuring not the 
Xj's, but the Oj's on S. Let their simultaneous eigenstates be 

101,02 . . . . .  Om> = IO> 

and their eigenvalues be 0a., 

o ,  lo> = 0,10> (2.1) 
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Then the outcomes of measuring the operators O a. will be the estimates 0j 
of the parameters Oj, the joint conditional p.d.f, of the estimates will be 

p(O 10) = (0 lp(O)10) (2.2) 

when the true values of the parameters are 0 and the density operator is 
p(O), and the expected cost will be, in place of equation (1.3), 

Trs f z(O) C(O, O) p(O) d m 0 (2.3) C 
9a 

where the operator C(O, 0) is obtained from the cost function C(0, 0) by 
replacing the estimates 0 by the operators 01, 02 ..... Ore, and where Trs 
stands for a trace over the Hilbert space figs. 

A more general formulation of quantum measurement is expressed in 
terms of an operator-valued measure. Consider the parameter space ~ to 
be divided arbitrarily into disjoint regions Ak, to each of which is assigned 
a positive-definite Hermitian operator X(Ak) acting in figs and having the 
following properties: 

(a) X(~)  = 0 (2.4) 

where ;~ is the empty set in ~1, 0 the zero operator in figs; 

(b) ~ x ( a , ) =  x(7. a , ] ,  a l  n & n . . .  n & n . . .  = z (2.5) / 
where I is any set of the indices i (additivity); 

(c) X(~) = 1 (2.6) 

where 1 is the identity operator in figs. The operators X(A~) need not 
commute. We think of the parameter space ~ as divisible into infinitesimal 
regions d" 0' at all points 0', with each of which is associated the infinitesimal 
positive-definite operator X(O';d"O') in such a way that for any finite 
region A, 

X(A) = f X(O'; d" 0') (2.7) 
A 

An example will be given in Section 3. The collection {X(A)} of operators 
so generated and obeying equations (2.4-2.6) makes up the operator-valued 
measure. When we speak of 'measuring' {X(A)} we mean applying to the 
system a measuring device that registers a set of outcomes ~ = (01, 02 ..... On) 
lying in the region A of ~ with probability 

Pr{0 e A 10} = Trs [p(0) X(A)] (2.8) 

where p(O) is the density operator of the system. 
The commuting operators Oj defined in equation (2.1) provide a special 

kind of operator-valued measure known as a 'projection-valued measure', 
with 

X(O;dmO) = [0)(0] d~O; 
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the operators 

X(A) = f ]0) (0[ dmO (2.9) 
A 

are projection operators in JqOs, 

When quantum me~urements are formulated thus, the joint conditional 
p.d.f, of the estimates 0 needed for evaluating the expected cost as in equa- 
tion (1.3) is given by 

p(O[O) d'O = Trsp(O) X(O; dmO) (2.10) 

and the average cost can be written 

C=Trs f fz(O) C(O,O)p(O)X(O;d~O)d"O (2.11) 

the minimization of which has been discussed by Holevo (1972). 
The need for this more general formulation of quantum measurement has 

been indicated in two ways. First of all, one can imagine adjoining to the 
system S an auxiliary system, or apparatus A, and measuring commuting 
estimators O1, O2 ..... O,, on one or both of them after they have interacted. 
Because the expected Bayes cost (7 is independent of the time at which the 
measurement is made, it will be the same as if commuting estimators were 
measured on S and A before their interaction (Helstrom & Kennedy, 1972). 
At that time the density operator for the combination would have the form 
p(O) | PA in the product space ~ s  | ~A, where the density operator PA 
of the apparatus is independent of the unknown parameters 0 and acts in 
the Hilbert space ~f~ of the apparatus. The conditional probability that 
the estimates 0 lie in an arbitrary region of the parameter space ~ is now 

Pr{A [0} = Trs+aPs(O) | PAf [0) (0[ d"O (2.12) 
A 

where the states t0) are defined in the product Hilbert space ~ s  | J~ 
over which the trace Trs+a is taken. This probability can be written 

Pr{A [0} = TrsPs(O) X(A) (2.13) 
where 

X(A) -- Trapa f [0) (0[ dmO (2.14) 
A 

denotes an operator-valued measure in d/ds as defined in equations (2.4-2.6). 
It is not, however, in general a projection-valued measure in d/g s. 

A second reason for bringing in operator-valued measures is the possi- 
bility of making discrete measurements on the system S at a succession of 
times h, t2, t3,..., between which the system evolves as described by the 
Schr6dinger equation. The outcome of all these discrete measurements, 



366 CARL W. HELSTROM 

which could be as fine and as extensive as desired or necessary, would 
constitute data from which estimates of the parameters 0 might be derived. 
Benioff (1972a, b) has shown that such a succession of discrete measure- 
ments is equivalent to measuring on the system S an operator-valued 
measure, even when they are made at an infinite sequence of times tl, t2, 
t3 ..... and when decisions about what to measure next are, after some or 
all of the measurements, made on the basis of the previous findings. 

According to a theorem of M. A. Neumark's (1943), a noncommuting 
operator-valued measure {X(A)} can be extended to a commuting, projec- 
tion-valued measure {E(A)} by embedding the defining Hilbert space ~ s  
in a larger Hilbert space ~t ~ in which 

X(A) = eE(A)P (2.15) 

where P is a projection operator projecting arbitrary vectors in Jr into the 
subspace corresponding to ~ s ,  and each E(A) is a projection operator in 
~ ' .  The operators O j  defined by 

,' f ! ! tn t, ~gj = Oj E(O ;d O) (2.16) 
, /  

where X(O'; d" 0') = PE(O'; d mif)P, will then be commuting estimators 
measurable in ~e, in the conventional quantum-mechanical sense. The 
generalization of the concept of quantum measurement to the operator- 
valued measures defined in equations (2.4-2.6) requires no break with 
accepted principles of quantum mechanics. 

How the extended Hilbert space ~ '  is constructed has been described 
by Achieser & Glasmann (1960). With each state vector [r in ~ s  we 
form all possible combinations I A, r  with regions A of 13; these are 
vectors in 24 e'. In the space ~r ~ the scalar product, indicated by a prime, 
of two such 'vectors' IA1, r and [A2, ~kz) is defined by 

<A2, r r (r n A~)I4,,> (2.17) 
where the expression on the right is the usual Dirac bracket expression. 
This new scalar product (. [.)' has all the properties of an ordinary scalar 
product. The vectors 113, ~b) span a subspace of ~t ~ that is identified with 
the original Hilbert space ~ s ;  indeed, 

<13, r 4,1>' = <021,/,1> (2.18) 
because of equations (2.17) and (2.6). The projection of an arbitrary vector 
IA, ~) onto ~fs is the vector [13, X(A) tp), and the operator that everywhere 
effects this is called P, 

P IA, 0) = ]13, X(A) ~) (2.19) 

The operator E(A) in ~4 ~ corresponding to X(A) in ~r through equation 
(2.15) is defined for each region A' of 13 and each state 1r of Jt~ by 

E(A)IA' ,  r = IA n A', r (2.20) 
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the set {E(A)) of operators so defined is shown by Achieser & Glasmann 
(1960) to represent a projection-valued measure, with E(~3)= 1', the 
identity operator in J~'. 

If the density operator p(O) is expressed in terms of its eigenvalues Pk 
and its eigenstates [~ok) in ~ s ,  

p(O) = ~ Pk[ ~ok) ( ~ok I (2.21) 
k 

we can define the density operator in the extended Hilbert space ~ "  by 

p'(O) = ~ Pk[~, (&) (~ ,  ~~ (2.22) 
k 

The probability that the measurement of the operator-valued measure 
{X(A)} yields values of the estimates 0 in a region A of ~ is now, by equation 
(2.17), 

Pr{A 10} = Tr [p(0) X(A)] = ~ Pk(~o~IX(A) lrpk) 
k 

k k 

= Tr' [p'(0) E(A)] (2.23) 

where Tr' is a trace over the space ovf ', for by equation (2.20) 

E(A) I~3, qgk) = I A, ~ok) (2.24) 

Thus if the operators Of,  j =  1, 2 ..... m, defined by equation (2.16) in 
terms of the projection-valued measure {E(A)}, are measured in ~ ' ,  the 
outcomes 01, 02 ..... 0,, will have the same probability density function as 
when the operator-valued measure {X(A)) is measured in the original 
Hilbert space ~ s .  

The extended space so constructed is not the only possible Hilbert space 
~((' in which a projection-valued measure {E(A)} related to {X(A)) by an 
equation like (2.15) exists. According to Holevo (1972), if the extended 
space Jr" has a large enough dimensionality, it can be represented as the 
product ~ s  | ~ a  of the space Yt~s and an auxiliary Hilbert space Jt~a, 
and in H a  a density operator Pa representing a pure state 

can be found such that the density operator in .~~ s | ~r has the product 
form p(O) | PA. How to determine the appropriate space ~ a  and the 
state I~A) in general is unclear. An example in which the Neumark exten- 
sion is known is given in the next section. 

3. Adjoined Harmonie Oscillators 
The coherent states I~) of the harmonic oscillator are overcomplete in 

the sense that 
f I~) (c~ I d2z/rc = 1 (3.1) 

25 
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where c~ = ~ + iq, d2s = d~d~l, and the integral is taken over the entire 
complex s-plane (Glauber, 1963). We can thus define an operator-valued 
measure {X(A)} by 

= f is) (st d2s/~ (3.2) X(A)  
A 

where A is an arbitrary region of the s-plane. This measure satisfies the rules 
(2.4-2.6), and the operators X(A)  and X(A')  for disjoint regions A and 
A' do not commute. We can define the differential operator by 

X(r d~ dq) = [4 + iq) (~ + iq[d~ dq/zc (3.3) 

The states [@ are the right eigenstates of the annihilation operator a, whose 
commutator with the adjoint creation operator a + is as usual 

[a, a +] = aa + - a + a = 1 (3.4) 

We define the dimensionless coordinate and momentum operators Q and 
P by 

a = �89 + + a), P = �89 + - a); (3.5) 

their commutator is 

[Q,P] = i/2 (3.6) 

The product of the space ~ s  of this harmonic oscillator and the space 
~r of an auxiliary harmonic oscillator A forms a Hilbert space 
~ ' =  ~/gs | J/fA in which the operator-valued measure {X(A)} can be 
extended to a commuting projection-valued measure. The product space 
is spanned by the continuous simultaneous eigenstates [4,r/) of the com- 
muting operators Q - Q' and P + P ' ,  where Q' and P '  are the coordinate 
and momentum operators, defined as in (3.5), for the auxiliary oscillator 
and 

a" = Q" + iP" (3.7) 

is its annihilation operator. 
These states can be written as 

rc -1/2 f e 2~"~ [q)l ]q -- 4)2 dq 14, r/) 

~-~/2 f eZ,,-p)elp)l In - p ) 2  dp (3.8) 

in terms of the eigenstates [q)~]q')2 of  the coordinate operators Q and Q' 
and the eigenstates [P)I IP')z of the momentum operators P and P ' ;  the 
subscripts 1 and 2 refer to the two oscillators. Indeed, 

(Q - Q')I~, ~t) = ~-1/2 f e2,,a[q _ (q _ ~)]lq)~[q - r 

= ~14, n) (3.9) 
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and 
(e + P t/) = ~-l/z J eZ,,-v)e(p + q _ p)IP>I It/- p>2 dp 

=nrr (3.10) 
These states are normalized so that 

(~', n' 14, q) = 6(4 - 4') 6(n - q') (3.11) 

The projection of the state [~, r/) onto the ground state ]0)2 of the second 
oscillator yields the state 

2(0[~, r/)10)2 = rc -1/z f e z''~ [q)l 2(0 [q - ~)2 dq ]0)z 

= z -1/2 eiOe lff + it/) 110)2 (3.12) 

where ]~ + ir/)~ is the coherent state for the first oscillator with parameter 
= ~ + ir/. The proof is given in the appendix. Thus the projection operator 

j.n [~, ~/)(4, r/Id~ drl is the Neumark extension of  the operator 

in the product g s  | ~ A  of the Hilbert spaces of  the two oscillators. The 
former provides a projection-valued measure in J f s  | ~/ga, the latter an 
operator-valued measure in the subspaee spanned by [wk)110)2, where the 
]wk)l form an arbitrary complete orthonormal set in ~ s ,  and 10)2 is the 
ground state of the second oscillator. The outcomes ~ and ~/of measuring 
in J/fs the noncommuting operator-valued measure {X(A)) defined by 
equation (3.2) have the same joint p.d.f, as the outcomes of measuring the 
commuting operators Q - Q" and P + P '  in ~ds | ffgA (Arthurs & Kelly, 
1965; Personick, 1971a). The ideal simultaneous measurement of non- 
commuting observables discussed by She & Heffner (1966) can be regarded 
as measurement of this operator-valued measure. 

4. The Cramdr-Rao Inequalities 
Let an operator-valued measure {X(A)) be generated by the infinitesimal 

operators X(O'; dmO ') as in equation (2.7). The conditional expected value 
of the estimate of the parameter 0j when (X(A)} is measured is 

E(0j[0) = 0j = f 0 /T r s  p(O) X(O'; d m 0") (4.1) 

the true values of the parameters being 0. If  

0j = 0j (4.2) 

the estimate of 0~ is said to be unbiased. We deal here for simplicity only 
with unbiased estimators. The covariances of the errors are similarly defined 
by 

B,j = E[(0,-  03 (0~- 0j)J0] 
= Trs f (0( - 0,) (Of - Oi) p(O) X(O'; d m 0") (4.3) 
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Because the operators X(O';d'O') are positive-definite, so is the matrix 
B = IlB~jl[. In the sequel we write simply Tr for Trs. 

We can derive a Cram6r-Rao inequality for unbiased estimators by 
following a procedure quite similar to the derivation in classical statistics. 
Differentiating equation (4.1) with respect to Ok and using equation (4.2), 
we get 

, 0 p  , m 
Tr f Oj -~k X(O ; d 0') = 5,k (4,4) 

By equation (2.6), and because Trp(0) - l ,  

f o p  , 
Tr ~ X(O ; d"  0') = 0 (4.5) 

Multiplying this by 0j, subtracting from equation (4.4), and introducing 
the right logarithmic-derivative (r.l.d.) operators Lk by 

we get 

3p/OOk = pLk = Lk + p (4.63 

Tr f (Of - Oj)Lk + pX(O" ; d" 0') = 6~ (4.7) 
~3 

This we multiply by yj+z k and sum over j  and k to obtain 

Y+ Z = ~ yj.* zj 
. i= I  

/~/ it/ f :~ / 
= Tr ~ ~ yj (Oj - Oj)zkLk+pX(O';d"O ') 

J j = l  k = l  

= Tr f rl* p~/2 X(O'; d" 0') gp~/2 (4.8) 

where Y+ = (y**,y2* ... . .  Ym*) is a row vector of arbitrary complex elements 
y~*, Z is a column vector of arbitrary complex elements z j, and 

tl = ~ yj(Of - 0:) 
a'=l (4.9) 

= ~ Lk + zk 
k = l  

Now we employ a version of the Schwarz inequality, which depends on 
the positive definiteness of the operators X; for any operators O1 and 02, 
which may depend on 0', and for any complex number )., 

Tr f (O, - )~O2) X(O'; d m 0') (O1 + - ,~* 02 +) > 0 (4.10) 
~3 
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and by minimizing in the usual way with respect to 2, we find the inequality 

[Tr f O1X(O' ;dmO')Ol+] [Tr ! O2 X(O' ;dmO')02 +] 

>~ Tr 02 d m 2 f X(O'; 0") 01 + (4.11) 

Here we take 

01 =pl/Z~+, O2 = t/.pl/2 (4.12) 

and obtain from equations (4.8) and (4.11) 

,Y+ Z[2 <[Tr f pl/2~+ X(O';dmO')~p 1/2] 
L 

x[Trfrl*pl/2X(O';dmO')pl/2rl] 
t $ 

L ~ L 

Since p and C do not depend on 0', we can integrate over the parameter space 
~3 in the first bracket on the right by using equation (2.6). Thus we finally 
obtain the inequality 

IY + ZI 2 < (Y+ BY) (Z + AZ) (4.14) 

where B is the covariance matrix defined in equation (4.3) and A = llAdl 
has the matrix elements 

A~j = Tr  (pLi Lj +) (4.15) 

If  in particular we put 

we obtain 

Z = A - 1 Y  (4.16) 

Y+ BY ~> Y+ A - 1 Y  (4.17) 

from which inequalities for various combinations of the var iancesand 
covariances of the unbiased estimates can be obtained by appropriate 
choices of the column vector Y. Furthermore, by expressing the positive- 
definite matrix G = [Jg~j[[ in terms of its eigenvectors and eigenvalues, we 
can bound the expected value of the quadratic cost function in equation 
(1.4) by 

E[C(0, 0)10] = r r  GB >~ Tr GA -1 (4.18) 

From what has been said in Section 2, these bounds apply as well to estimates 
based on measurements of  commuting operators on a combination of the 
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system S with an auxiliary apparatus A, when the density operator has the 
product form p(O) | Pa, with Pa independent of the unknown parameters 
0. They also cover estimates based on the outcomes of a temporal succession 
of measurements on the system. 

Equality holds in equation (4.11) if the operators X(O'; d m 0') obey 

(01 - 202) X(O" ; d'O') = 0 

for some complex number 2. Translating by means of equations (4.12), 
(4.9), and (4.16), we require for some 2 

~ yj*(A-1)jk pLk X(O'; d m 0") = 2p ~ yj*(Oj - O j) X(O'; d m 0') (4.19) 
J= l  k= l  j = l  

An example will be presented in Section 5. 
A second Cram6r-Rao inequality can be based on the symmetrized 

logarithmic derivative (s.l.d.) operators ~ s  defined by 

OplO0~ = �89 + s + p) (4.20) 

and by adapting the analysis in a previous paper (Helstrom, 1968a) to this 
new format, we can show that 

YBY > ~ r  y (4.21) 

where now the elements of the column vector Y and its transposed row 
vector ~ = (Y~,Y2 ..... y~) must be real numbers, and the elements of the 
symmetric matrix d are given by 

~ u  = �89 P(*o~ai s + s s (4.22) 

Equality in (4.21) requires 

p ~ ~ yt(d-1)uL~':X(O';d"O')=2p '~ y,(O{-Ot)X(O';d"O') (4.23) 
1=1 j = l  j = l  

5. Estimating the Complex Amplitude of  a Harmonic Oscillator 
The density operator of a simple harmonic oscillator in thermal equilib- 

rium with a heat bath at absolute temperature J" and containing a 
coherent oscillation of complex amplitude p = #1 + i/x2 is given in the 
P-representation by 

p(~l,m)=(~N)-l f exp(-I~-~l~/N)l~><~Id2~ (5.1) 
(Glauber, 1963), where the la) are coherent states as in Section 3 and 

N =- ( e  * ' / K ~  - 1)  - 1  

is the mean number of thermal photons, hv being the quantum of energy 
and K Boltzmann's constant. The oscillator might represent a mode of an 
ideal receiver of a coherent electromagnetic signal (Helstrom, 1972). The 
mean number of photons attributable to the signal in the mode is Ns = I/x[ 2. 
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To be estimated are the real and imaginary parts of  the complex amplitude It. 
The r.l.d, operators are now 

a + -  #*  a - -  p 

L~ = N + N +-'---1 

[a + -- It* a -- It 
L2 = N i)  

(5.2) 

in terms of the annihilation and creation operators a and a + of the mode 
field, as can be shown by equation (3.20) of  Helstrom (1967b), and the 
s.l.d, operators are 

.~a 1 = 4(Q - m l ) / ( 2 N +  1) 
(5.3) 

~ocP 2 = 4(P -- m 2) / (2N  + 1) 

with Q and P defined by equation (3.5) (Helstrom, 1968a). The matrices 
A -~ and ~r defined through equations (4.15) and (4.22) are now 

A-I=�88 1 - "  2N+i ]1 (5.4) 

~r =�88 1 2N+0 ]1 (5.5) 

The vectors ~" = (1 0) and (0 1) give with each form of the Cram6r-Rao 
inequality the bounds 

Var/1,/> �88 + 1), i = 1,2 (5.6) 

and equality is obtained for Var/i~ by measuring the estimating operator 
Q and for Var/22 by measuring P. These cannot both be measured simul- 
taneously on the same system. 

If  we put Y+ = (1 i) into equation (4.17), we obtain an inequality due to 
Yuen & Lax (1972), 

Vary1 + Var/~2 >I N +  1 (5.7) 

and equation (4.19) states after multiplication by p-l,  which exists, 

(a - #) X(/q', P2'; dit~' dp2') = 2(it' - p) X ~ ' ,  It2'; ditl' dit2") (5.8) 

This is satisfied with 2 = 1 by 

XO~', It2'; dlA" dp2") = ) t ' )  (i t 'I  d i t (  dit2'/rc (5.9) 

where [#') is the coherent state of complex amplitude #' = Its' + iit2', which 
is the right eigenstate of  the annihilation operator a (Glauber, 1963). 
Thus the lower bound N +  1 on the sum of  the variances of unbiased 
estimates of the real and imaginary parts, Itx and #2, of  the complex ampli- 
tude It of  the signal is attained by a device that measures the operator-valued 
measure described in Section 3. As shown there, that procedure is equivalent 
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to measuring the commuting operators Q - Q" and P + P '  on the combina- 
tion of the original harmonic oscillator with an auxiliary one in the ground 
state (Personick, 1971a). 

When N = 0, the density operator in equation (5.1) reduces to that of a 
pure state I/l)(#l representing a minimum-uncertainty wave packet. 
Equation (5.6) then is consistent with the usual form of the uncertainty 
principle, 

(Var/~1Var/~2) 1/2 >~ �88 (5.10) 

and refers to estimates of #a and #2 on different systems. The estimates 
obtained by measuring Q - Q' and P + P '  as stated above yield, however, 

(Var/~1Var ~2) 1/2 = �89 (5.11) 

consistently with the results of Arthurs & Kelly (1965). 
The two quantum-mechanical forms of the Cram6r-Rao inequality 

have been applied by Helstrom & Kennedy (1972) to the estimation of the 
arrival time z and the angular carrier frequency /2 of a narrow-band, 
coherent pulse signal reeeived in the presence of thermal noise. Superior 
bounds on the minimum variances of individual estimates of z or ~2 are 
given by the inequality, equation (4.21), based on the s.l.d, operators A~ 

Var~/> ( D  2 Av)2) - I  

Var~ ~> (D 2 At2) -1 (5.12) 

where 
D 2 = 4N~/(2N + 1) (5.13) 

is a signal-to-noise ratio, with N given in equation (5.2) and N~ the mean 
number of photons borne by the signal; A t 2 and Av)2 are mean-square time 
and angular-frequency widths of the pulse (Helstrom, 1968b, p. 18 if). 
When N >> 1 these reduce to the lower bounds set by classical estimation 
theory (Helstrom, 1968b, p. 282). (These results are for the sake of simplicity 
given for a purely amplitude-modulated pulse.) For simultaneous estima- 
tion of both arrival time z and carrier frequency ~, on the other hand, the 
inequality (4.17) yields the superior lower bound on a weighted sum of 
squared errors 

Var~ Var~ 2N(N+ 1) (5.14) 
R = - T t ~  + - - ~ J  > N~AV) At[(ZN + 1) Av) At- �89 

when �89 ~</Iv)At ~ N +  3. The minimum value of the product Av)At is �89 
attained for a pulse with a Gaussian form. For Av)At> N+�89 on the 
other hand, equation (4.21) yields the superior bound, 

2 N +  1 
R>f 2N~AV)2At2, AV)At> N+�89 (5.15) 

For N >> 1 both yield the classical result obtained by weighting and adding 
the inequalities in (5.12). In the domain of quantum-theory, however, the 
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lower limit on  the risk R for  joint  measurement  of  the arrival time and 
carrier frequency of  a signal in the same receiver may  be greater than the 
lower limit on R when those parameters are measured on signals in separate 
receivers. 
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Appendix: Proof of  Equation (3.12) 

~-1/2 f e2'~qlq)l 2(OIq - 4)2 dq 2f01~ t/) 

= (2/re) 1/~ ~z -a/z f eZtnq-(~-~ dq 

= (2/z01/~ ~-1/2 e-e2 f e-~2+2~alq)l dq 

with ~ = ~ + it/, where we have used 

2(q f )  = (2/rc)1/4 exp [_(q2 _ 2flq + �89 2 + �89 

for  the second oscillator, with/~ = 0 (Glauber, 1963). However,  for  the first 
oscillator, the coherent state I~} is 

l@ = f Iq)l l(q I c~) dq 

(2/zc) TM f lq)~ exp - [q2 _ 2c~q + �89 2 + �89 

with which our first equation yields immediately 

2(Olff, t/> = 7r-1/2 ele.lc~ > 

whence equat ion (3.12) follows. 
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